Полная шпаргалка по русскому языку

Введение Увлечение математикой часто начинается с размышлений над какой-то особенно понравившейся задачей. Она может встретиться и на школьном уроке, и на занятии математического кружка, и в журнале или книжке. А меня очень заинтересовали старинные задачи, с которыми мы столкнулись на уроке математики. И я решил узнать о них больше. Старинные задачи пришли к нам из глубины веков, от наших предков. Разные народы нашей планеты придумывали их, оттачивали условия и логику заданий. Они неизбежно остроумны и занимательны, в них собраны замечательные находки многих поколений.

Введение

Увлечение математикой часто начинается с размышлений над какой-то особенно понравившейся задачей. Она может встретиться и на школьном уроке, и на занятии математического кружка, и в журнале или книжке. А меня очень заинтересовали старинные задачи, с которыми мы столкнулись на уроке математики. И я решил узнать о них больше. Старинные задачи пришли к нам из глубины веков, от наших предков. Разные народы нашей планеты придумывали их, оттачивали условия и логику заданий. Они неизбежно остроумны и занимательны, в них собраны замечательные находки многих поколений.

полная шпаргалка по русскому языку src="http://arhivurokov.ru/videouroki/b/e/a/bea17e57dcf31a765b1e457f378263b319ace5f1/img2.jpg" alt="Старинные задачи позволяют не только развить смекалку и сообразительность, но и почувствовать прикосновение других эпох, порадоваться пришедшему решению точно так же, как когда-то, быть может, радовались наши предки. Наши предки умели думать и решать шпаргалка задачи. Очень многие сказки воспевают смекалку и скорость мышления, благодаря которым герои обретают счастье. Такие качества, как сообразительность, оригинальность слова и дела, уникальность и мастерство всегда были и будут в цене. Конечно, задач и головоломок за века было придумано неисчислимое множество, и я специально отобрал лучшие из них. ">

Старинные задачи позволяют не только развить смекалку и сообразительность, но и почувствовать прикосновение других эпох, порадоваться пришедшему решению точно так же, как когда-то, быть может, радовались наши предки. Наши предки умели думать и решать задачи. Очень многие сказки воспевают смекалку и скорость мышления, благодаря которым герои обретают счастье. Такие качества, как сообразительность, оригинальность слова и дела, уникальность и мастерство всегда были и будут в цене. Конечно, задач и головоломок за века было придумано неисчислимое множество, и я специально отобрал лучшие из них.

Еще в древние века математика занимала основное место в умах ученых и благодаря сохранившимся рукописям у нас есть возможность проследить за развитием математической мысли и возможность прорешать старинные задачи и сравнить их решение с современным решением. Цель исследования: выявление роли и места старинных задач в современном мире, рассмотрение различных способов решения старинных задач. Задачи исследования: исследовать решение старинных задач методом перебора; методом подбора; методом предположения, алгебраическим способом; наглядно-геометрическим способом исследовать старинный способ решения задач на сплавы и смеси.

Еще в древние века математика занимала основное место в умах ученых и благодаря сохранившимся рукописям у нас есть возможность проследить за развитием математической мысли и возможность прорешать старинные задачи и сравнить их решение с современным решением.

Цель исследования: выявление роли и места старинных задач в современном мире, рассмотрение различных способов решения старинных задач.

Задачи исследования:

  • исследовать решение старинных задач методом перебора; методом подбора; методом предположения, алгебраическим способом; наглядно-геометрическим способом
  • исследовать старинный способ решения задач на сплавы и смеси.
Диофант Его называют отцом алгебры Диофант умел решать очень сложные уравнения, он применял для этого буквенные обозначения и другие приемы. Биографические данные зашифрованы в виде математической задачи, начертанной на его гробнице.

Диофант

Его называют

отцом алгебры

Диофант умел решать

очень сложные уравнения,

он применял для этого

буквенные обозначения

и другие приемы.

Биографические данные

зашифрованы в виде

математической задачи,

начертанной на его гробнице .

Задача № 1 Жизнь Диофанта. По преданию, на могильном камне имелась такая надпись: «Путник! Под этим камнем покоится прах Диофанта, умершего в глубокой старости. Шестую часть своей долгой жизни он был ребёнком, двенадцатую- юношей, седьмую- провёл неженатым. Через 5 лет после женитьбы у него родился сын, который прожил вдвое меньше отца. Через четыре года после смерти сына уснул вечным сном и сам Диофант, оплакиваемый своими близкими. Скажи, если умеешь считать, сколько прожил Диофант?»

Задача № 1

Жизнь Диофанта. По преданию, на могильном камне имелась такая надпись:

«Путник! Под этим камнем покоится прах Диофанта, умершего в глубокой старости. Шестую часть своей долгой жизни он был ребёнком, двенадцатую- юношей, седьмую- провёл неженатым. Через 5 лет после женитьбы у него родился сын, который прожил вдвое меньше отца. Через четыре года после смерти сына уснул вечным сном и сам Диофант, оплакиваемый своими близкими. Скажи, если умеешь считать, сколько прожил Диофант?»

Довольно часто приходится смешивать различные жидкости, порошки, разбавлять что-либо водой или наблюдать испарение воды. В задачах такого типа эти операции приходится проводить мысленно и выполнять расчёты. При решении задач на смеси считается, что рассматриваемые смеси однородны: не делается различия между литром как единицей массы и как единицей ёмкости. Концентрацией вещества называется отношение массы этого вещества к массе всей смеси (раствора, сплава). Концентрация вещества, выраженная в процентах, называется процентным отношением вещества в смеси (растворе, сплаве). Существует старинный способ решения задач на смеси и сплавы. Задачам подобного типа уделялось значительное внимание в старинных рукописях и «Арифметике» Л.Ф.Магницкого. После определения числового выражения - переход на следующий слайд (верхняя кнопка) Попадая повторно на этот слайд повторяем определение буквенных выражений. Далее: Чтобы получить второе определение – нажмите на «Знайку». После определения буквенных выражений нажмите на вторую кнопу и Вы перейдете к практическому заданию.

Довольно часто приходится смешивать различные жидкости, порошки, разбавлять что-либо водой или наблюдать испарение воды. В задачах такого типа эти операции приходится проводить мысленно и выполнять расчёты. При решении задач на смеси считается, что рассматриваемые смеси однородны: не делается различия между литром как единицей массы и как единицей ёмкости. Концентрацией вещества называется отношение массы этого вещества к массе всей смеси (раствора, сплава). Концентрация вещества, выраженная в процентах, называется процентным отношением вещества в смеси (растворе, сплаве). Существует старинный способ решения задач на смеси и сплавы. Задачам подобного типа уделялось значительное внимание в старинных рукописях и «Арифметике» Л.Ф.Магницкого.

После определения числового выражения - переход на следующий слайд (верхняя кнопка)

Попадая повторно на этот слайд повторяем определение буквенных выражений. Далее: Чтобы получить второе определение – нажмите на «Знайку». После определения буквенных выражений нажмите на вторую кнопу и Вы перейдете к практическому заданию.

 Лео́нтий Фили́ппович Магни́цкий (9(19)июня 1669- 19(30)октября 1739) Магницкий Л.Ф. (при рождении  Телятин)- русский  математик, педагог; преподаватель математики в Школе математических и навигацких наук в Москве (с 1701 по 1739), автор первой в России учебной энциклопедии по математике (в 1703г. «Арифметика»), которая более ста лет являлась основным учебным пособием по математике в России.

Лео́нтий Фили́ппович Магни́цкий (9(19)июня 1669- 19(30)октября 1739)

Магницкий Л.Ф. (при рождении  Телятин)-

русский  математик, педагог;

преподаватель математики в Школе

математических и навигацких наук

в Москве (с 1701 по 1739),

автор первой в России учебной

энциклопедии по математике

(в 1703г. «Арифметика»), которая

более ста лет являлась основным

учебным пособием по математике

в России.

40-30 30-5 Задача 1. Смешивая 5% и 40% растворы кислот, необходимо получить 30% раствор. В каком соотношении их необходимо взять? Параметры конечного продукта Параметры исходных продуктов Доли исходных продуктов в конечном продукте 5% 1-ый продукт 10 частей 30% 25 частей 40% 2-ой продукт Соотношение первого и второго растворов – 10:25 или 2:5.

40-30

30-5

Задача 1 . Смешивая 5% и 40% растворы кислот, необходимо получить 30% раствор. В каком соотношении их необходимо взять?

Параметры конечного продукта

Параметры исходных продуктов

Доли исходных продуктов в конечном продукте

5%

1-ый продукт

10 частей

30%

25 частей

40%

2-ой продукт

Соотношение первого и второго растворов – 10:25 или 2:5.

Задача 1а. Смешивая 5% и 40% растворы кислот, необходимо получить 30% раствор. Сколько грамм каждой кислоты необходимо смешать, чтобы получить 140 г 30%- ого раствора? Решение: Сколько всего частей? 2 + 5 = 7(ч) Сколько грамм приходится на одну часть? 140 : 7 = 20(г) Сколько грамм 5%-го раствора взять? 2 · 20 = 40(г) Сколько грамм 40%-го раствора взять? 5 · 20 = 100(г) Ответ: для получения 140г 30%-ного раствора нужно взять 5%-ного раствора 40г, а 40%-ного - 100 г.

Задача 1а. Смешивая 5% и 40% растворы кислот, необходимо получить 30% раствор. Сколько грамм каждой кислоты необходимо смешать, чтобы получить 140 г 30%- ого раствора?

Решение:

  • Сколько всего частей?

2 + 5 = 7(ч)

  • Сколько грамм приходится на одну часть?

140 : 7 = 20(г)

  • Сколько грамм 5%-го раствора взять?

2 · 20 = 40(г)

  • Сколько грамм 40%-го раствора взять?

5 · 20 = 100(г)

Ответ: для получения 140г 30%-ного раствора нужно

взять 5%-ного раствора 40г, а 40%-ного - 100 г.

Заключение Математика в настоящее время все шире проникает в повседневную жизнь, все более внедряется в традиционно далекие от нее области. Компьютеризация общества, внедрение современных информационных технологий требует математической грамотности человека почти на каждом рабочем месте. Это предполагает и конкретные математические знания, и определенный стиль мышления, вырабатываемый математикой. Решение задач различными способами способствует углублению знаний, логического мышления, расширяет кругозор. «Кто с детских лет занимается математикой, тот развивает внимание, тренирует свой мозг, свою волю, воспитывает настойчивость и упорство в достижении цели». (А. Маркушевич).

Заключение

Математика в настоящее время все шире проникает в повседневную жизнь, все более внедряется в традиционно далекие от нее области. Компьютеризация общества, внедрение современных информационных технологий требует математической грамотности человека почти на каждом рабочем месте. Это предполагает и конкретные математические знания, и определенный стиль мышления, вырабатываемый математикой.

Решение задач различными способами способствует углублению знаний, логического мышления, расширяет кругозор.

«Кто с детских лет занимается математикой, тот развивает внимание, тренирует свой мозг, свою волю, воспитывает настойчивость и упорство в достижении цели». (А. Маркушевич)

.

 Ознакомление с историческими фактами позволяет лучше понять роль математики в современном обществе, углубляют понимание изучаемого раздела программы. В результате изученной темы было выяснено, что существует множество методов различных старинных задач. Естественно, все их виды рассмотреть невозможно. Также мы научились правильно анализировать задачи и решать их разными методами (путём составления уравнений, т.е методом ложного положения, методом полного перебора вариантов и т.д) и разными способами: алгебраическим и арифметическим (старинным). Арифметические способы решения текстовых задач имеют больший развивающий потенциал, чем универсальный алгебраический способ решения. В наше время предпочтение отдаётся алгебраическому способу.

Ознакомление с историческими фактами позволяет лучше понять роль математики в современном обществе, углубляют понимание изучаемого раздела программы.

В результате изученной темы было выяснено, что существует множество методов различных старинных задач. Естественно, все их виды рассмотреть невозможно. Также мы научились правильно анализировать задачи и решать их разными методами (путём составления уравнений, т.е методом ложного положения, методом полного перебора вариантов и т.д) и разными способами: алгебраическим и арифметическим (старинным). Арифметические способы решения текстовых задач имеют больший развивающий потенциал, чем универсальный алгебраический способ решения. В наше время предпочтение отдаётся алгебраическому способу.


Источник: https://videouroki.net/razrabotki/starinnyie-zadachi-i-sposoby-ikh-rieshieniia.html


Решение задач по теме: Световые кванты. Теория фотоэффекта Гдз по английскому языку progress check 4



Полная шпаргалка по русскому языку Геометрия. 8 класс. Поурочное планирование по учебнику
Полная шпаргалка по русскому языку Рабочая тетрадь по математике, 2 класс, Дорофеев, 2 часть
Полная шпаргалка по русскому языку Темы исследовательских работ и проектов по математике
Полная шпаргалка по русскому языку ГДЗ 4 класс - решебник, ответы онлайн
Полная шпаргалка по русскому языку Учебники 9 класс, читать
Проект Приказа Федеральной службы войск национальной Книги, учебники, решебники, ГДЗ, тесты и контрольные Проектирование Википедия Примеры решения задач по теории вероятности Курс микроэкономики - Нуреев Р. М. - Учебник для вузов ЕГЭ по математике 2018, единый государственный экзамен по Итоговая аттестация по окружающему миру, 4 класс