Как связаны синус косинус и тангенс

Понятие синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника

Будем измерять величины углов в радианах. Поворот координатной плоскости вокруг начала координат на угол $\alpha $ радиан будем обозначать символом $R^{\alpha }$.

Через $P_{\alpha }$ будем обозначать точку единичной окружности $x^2+y^2=1$ которая получается из точки $P_0$ с координатами $(1,0)$ путем поворота плоскости вокруг начала координат на угол $\alpha $.

Рассмотрим в Декартовой системе координат окружность с радиусом $R >0$ и центром $(0,0)$ (рис. 1).

Окружность радиуса $R >0$.

Рисунок 1. Окружность радиуса $R >0$.

$\left[OB\right]$ получается из $\left[OA\right]=R$ путем поворота на угол $\alpha $ радиан. Пусть $x$ и $y$ абсцисса и ордината точки $B$, соответственно, тогда

Так как в определениях синуса и косинуса их значения не зависят от радиуса окружности, то можно принять $R=1$. Поэтому, другим способом, тригонометрические значения определяются следующим образом:

Определение 1

Синусом острого угла называется ордината единичной окружности, которая получается из точки $(1,\ 0)$ путем поворота на угол $\alpha $ радиан.

Нужна курсовая?

Напишем недорого и точно в срок! Более 50 000 проверенных специалистов

Онлайн заказ Цены и сроки

Акция! Дарим 100 руб.
на первый заказ!

получить

Р

Реферат

от 200 руб / от 2х часов

К

Контрольная работа

от 350 руб / от 2х часов

Р

Решение задач

от 50 руб / от 2х часов

Определение 2

Косинусом острого угла называется абсцисса единичной окружности, которая получается из точки $(1,\ 0)$ путем поворота на угол $\alpha $ радиан.

Определение 3

Тангенсом угла называется отношение значения синуса этого угла к значению косинуса этого угла.

Определение 4

Котангенсом угла называется отношение значения косинуса этого угла к значению синуса этого угла.

Основное тригонометрическое тождество

Определение 5

Проверим следующее тождество:

\[{sin}^2A+{cos}^2A=1\]

Для этого будем рассматривать прямоугольный треугольник $ABC$ c прямым углом $C$ (рис. 2).

Рисунок 2.

Из него получим

\[{\left(\frac{BC}{AB}\right)}^2+{\left(\frac{AC}{AB}\right)}^2=\frac{{BC}^2+{AC}^2}{{AB}^2}\]

Из теоремы Пифагора мы знаем, что ${BC}^2+{AC}^2={AB}^2$, следовательно

\[{sin}^2A+{cos}^2A=\frac{{BC}^2+{AC}^2}{{AB}^2}=\frac{{AB}^2}{{AB}^2}=1\]

Это тождество называется основным тригонометрическим тождеством.

Нужна курсовая?

Напишем недорого и точно в срок! Более 50 000 проверенных специалистов

Онлайн заказ Цены и сроки

Акция! Дарим 100 руб.
на первый заказ!

получить

Р

Реферат

от 200 руб / от 2х часов

К

Контрольная работа

от 350 руб / от 2х часов

Р

Решение задач

от 50 руб / от 2х часов

Основные значения синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника

Вычислим значения для углов в ^{{}^\circ },\ {45}^{{}^\circ }$ и ^{{}^\circ }$. Для этого вспомним следующую теорему.

Теорема 1

Катет, лежащий напротив угла в ^{{}^\circ }$, равняется половине гипотенузы прямоугольного треугольника.

Пусть для начала у нас $\angle A={30}^{{}^\circ }$. Так как треугольник прямоугольный, то $\angle B={60}^{{}^\circ }$.

По теореме 1, имеем $AB=2BC$.

Используя основное тригонометрическое тождество (5), получим:

Теперь нетрудно найти тангенсы и котангенсы этих углов.

Пусть теперь $\angle A={45}^{{}^\circ }$. Тогда $\angle B={45}^{{}^\circ }$, то есть прямоугольный треугольник -- равнобедренный. По теореме Пифагора ${BC}^2+{AC}^2={AB}^2$, следовательно, ${AB}^2={2BC}^2=2{AC}^2$, то есть

Тогда

Сведем все полученные данные в таблицу (таблица 1).

Рисунок 3.

Нужна курсовая?

Напишем недорого и точно в срок! Более 50 000 проверенных специалистов

Онлайн заказ Цены и сроки

Акция! Дарим 100 руб.
на первый заказ!

получить

Р

Реферат

от 200 руб / от 2х часов

К

Контрольная работа

от 350 руб / от 2х часов

Р

Решение задач

от 50 руб / от 2х часов

Пример задачи

Пример 1

Найти все тригонометрические значения угла $A$, если$AB=25,\ BC=20,\ AC=15.$

Решение.

Все решение задачи будем производить с помощью прямоугольного треугольника (рис. 2).

\[sinA=\frac{BC}{AB}=\frac{20}{25}=0,8\] \[cosA=\frac{AC}{AB}=\frac{15}{25}=0,6\] \[tgA=\frac{BC}{AC}=\frac{20}{15}=1\frac{1}{3}\] \[ctgA=\frac{AC}{BC}=\frac{15}{20}=0,75\]
Источник: https://avtor24.ru/spravochniki/matematika/sootnosheniya_mezhdu_storonami_i_uglami_treugolnika/sinus_kosinus_tangens_kotangens_ugla/


Рекомендуем посмотреть ещё:


Закрыть ... [X]

Cинус, косинус, тангенс и котангенс. Подробная теория с примерами Маленькие картины для вышивки бисером



Как связаны синус косинус и тангенс Зависимости между тангенсом и косинусом, котангенсом и синусом
Как связаны синус косинус и тангенс Что такое тангенс, котангенс, синус, косинус Ответ
Как связаны синус косинус и тангенс Что такое тангенс, синус и косинус? - Генон
Как связаны синус косинус и тангенс Синус, косинус, тангенс, котангенс угла
Как связаны синус косинус и тангенс Тригонометрические функции Википедия
Как связаны синус косинус и тангенс Как связаны синус косинус и тангенс
Как связаны синус косинус и тангенс Основные формулы тригонометрии
А как связан синус и тангенс Вязание оригинальных ажурных носков спицами Детская вязаная жилетка спицами Видео на Запорожском портале Диптих, Триптих, Полиптих - Схемы - Вышивальщица Как просто сделать выкройку теплого сарафана по Как связать шапку спицами. Женская, мужская Маски для лица в домашних условиях. 18 рецептов Поделки из пластиковых бутылок для сада и огорода своими

Похожие новости